{{flagHref}}
製品
  • 製品
  • カテゴリー
  • ブログ
  • ポッドキャスト
  • 応用
  • ドキュメント
|
SDS
見積もり
/ {{languageFlag}}
言語を選択
Stanford Advanced Materials {{item.label}}
Stanford Advanced Materials
/ {{languageFlag}}
言語を選択
Stanford Advanced Materials {{item.label}}

硝酸セリウム(IV)アンモニウム:よく使われる酸化剤

硝酸セリウム(IV)アンモニウム(CAN)は、一般的に使用される酸化剤であり、硝酸セリウム(IV)アンモニウムの分子式はCe(NH4)2(NO3)6である。橙赤色の結晶で、水やエタノールに溶け、濃硝酸にはほとんど溶けず、空気中で潮解する。 回路の腐食や他のセリウム含有化合物の製造のための酸化剤としてよく使用される。

Cerium (IV) Ammonium Nitrate

硝酸セリウム(IV)アンモニウム

硝酸セリウム(IV)アンモニウムは強い酸化剤で、酸性条件下ではF2、XeO3、Ag2+、O3、HN3に次いで酸化力が強い。 水溶液や他のプロトン性溶媒中では、硝酸セリウム(IV)アンモニウムは1電子の酸化剤である。硝酸セリウム(IV)アンモニウムの消費は、色の変化(橙色から淡黄色)から判断できる。

硝酸セリウム(IV)アンモニウムは、有機溶媒への溶解度に限界があるため、水/アセトニトリルのような混合溶媒中で反応が行われることが多い。 臭素酸ナトリウム、tert-ブチルヒドロペルオキシド、酸素のような他の酸化剤の存在下では、Ce4+をリサイクルして触媒反応を達成することができる。 さらに、硝酸セリウム(IV)アンモニウムは、効果的なニトロ化試薬でもある。

CANは、アルコール、フェノール、エーテルなどの含酸素化合物に対して酸化活性を有し、中でも第二級アルコールに対して特異的な酸化特性を示す。例えば、ベンジルアルコールを対応するアルデヒドやケトンに酸化する(式1)。また、4-エノールや5-エノールのような特殊な2級アルコールでは、CANの作用により環状エーテル化合物(式2)を得ることができる。

Equation 1 2

カテコール、ヒドロキノン、およびそれらのメチルエーテル化合物は、CANの作用下でキノンに酸化することができ、例えば、カテコールからo-ベンゾキノンへの変換(式3)、ヒドロキノンからp-ベンゾキノンへの急速な変換(式4)、CANの作用下での超音波、およびアリールエーテルからp-ベンゾキノンへの変換が挙げられる。

Equation 3 4

また、エポキシ化合物の酸化反応により、ジカルボニル化合物を生成することもできる(式5)。さらに、CANは、多環式ケージケトンをラクトンに酸化するなど、特定の構造を持つカルボニル化合物に対しても酸化活性を示す(式6)。

Equation 5 6

単電子酸化剤として、CANは分子間または分子内の炭素-炭素結合形成反応も実現できる。例えば、CANの作用による1,3-ジカルボニル化合物とスチレン系の酸化的付加反応(式7)や、アニリン自体の二量化反応(式8)などが挙げられる。

Equation 7 8

酸化反応に加え、CANはニトロ化反応、特に芳香環系のニトロ化反応にも有効な試薬である。例えば、アセトニトリル中で、CANはアニソールと反応してオルトニトロ化生成物を得る(式9)。 しかし、CANの強い酸化性のため、芳香環系はしばしばポリニトロ化反応を起こし、分離が困難なポリマーまで生成する。例えば、アセトニトリル中で、シリカゲルを担体として使用し、カルバゾールと9-アルキルカルバゾールをCANで硝酸化すると、収率を70%~80%まで高めることができる(式10)。

Equation 9 10

結論

この記事をお読みいただきありがとうございました。一般的に使用される酸化剤である硝酸セリウム(IV)アンモニウムについての理解を深めていただく一助となれば幸いです。硝酸セリウム(IV)アンモニウムやその他の粉末についてさらに詳しくお知りになりたい方は、スタンフォード・アドバンスト・マテリアルズ (SAM)をご利用ください。

硝酸セリウム(IV)アンモニウム製品の世界的なサプライヤーとして、スタンフォードアドバンストマテリアルズ(SAM)硝酸セリウム(IV)アンモニウムの製造と販売において20年以上の経験を持っており、お客様の研究開発と生産のニーズを満たす高品質の硝酸セリウム(IV)アンモニウムを提供しております。このように、SAMはお客様のお気に入りの硝酸セリウム(IV)アンモニウム サプライヤー、ビジネスパートナーになると確信しております。

著者について

Chin Trento

イリノイ大学で応用化学の学士号を取得。彼の学歴は、多くのトピックにアプローチするための幅広い基盤となっている。スタンフォード・アドバンスト・マテリアルズ(SAM)で4年以上にわたり先端材料の執筆に携わる。彼がこれらの記事を書く主な目的は、読者に無料で、しかも質の高いリソースを提供することである。誤字、脱字、見解の相違など、読者からのフィードバックを歓迎する。

格付け
{{viewsNumber}} について考えてみた "{{blogTitle}}"
{{item.created_at}}

{{item.content}}

blog.levelAReply (Cancle reply)

メールアドレスは公開されません。は必須項目です。*

ご要望
名称 *
電子メール *
{{item.children[0].created_at}}

{{item.children[0].content}}

{{item.created_at}}

{{item.content}}

blog.MoreReplies

返信を残す

メールアドレスは公開されません。は必須項目です。*

ご要望
名称 *
電子メール *

ニュースレターを購読する

* お名前
* Eメール
成功 登録が完了しました
登録が完了しました!この送信者からの素晴らしいメールを受信するために、すぐに受信箱をチェックしてください。

関連ニュース&記事

もっと見る >>
水素エネルギーと燃料電池におけるアルミナ

燃料電池システムと水素エネルギーにおけるアルミナとその使用について簡単に紹介。アルミナセラミックスの熱的・化学的安定性と、固体酸化物形燃料電池におけるアドバンスト・アルミナの利点を取り上げる。

詳細はこちら >
多孔質タンタルの臨床応用

多孔質タンタルは、その優れた生体適合性、耐食性、および天然骨の力学に一致する特性により、生体医工学における奇跡的な材料として登場した。当初は整形外科用に合成されたが、現在では歯科、心血管デバイス、実験的再生医療などにも用途が広がっている。その実験的および臨床的応用例を見てみよう。

詳細はこちら >
機能性酸化ビスマス(BSO)シスタルの多面的合成

酸化ビスマス(BSO)は、豊富な構造多形を持つ機能性結晶材料の一種である。その化学組成は、主に立方晶Bi4Si3O12と立方晶クロライトBi12SiO20の2つの安定した結晶構造で現れます。

詳細はこちら >
メッセージを残す
メッセージを残す
* お名前:
* Eメール:
* 商品名:
* 電話番号:
* ご要望: