{{flagHref}}
Продукция
  • Продукция
  • Категории
  • Блог
  • Подкаст
  • Приложение
  • Документ
|
/ {{languageFlag}}
Выберите язык
Stanford Advanced Materials {{item.label}}
Stanford Advanced Materials
Выберите язык
Stanford Advanced Materials {{item.label}}

ニチノールがスプリンクラーのスイッチを入れる方法

ニチノールとしても知られるニッケルチタン合金は、ニッケルとチタンからなる二元合金である。この2つの元素は原子比でほぼ等しい(ニチノール55とニチノール60が一般的)。温度と機械的圧力の変化により、ニチノールはオーステナイト相とマルテンサイト相という2つの異なる結晶構造相を持つ。

Nitinol springs

ニチノールでは、オーステナイト相は母相と呼ばれ、高温で合金が示す結晶相です。温度が下がると、オーステナイトは徐々にマルテンサイト(亜相)に変化します。

マルテンサイトとオーステナイトの変態の過程では、4種類の温度がある:
As:温度上昇の過程でマルテンサイトがオーステナイトに変態し始める温度。
Af:温度上昇の過程でマルテンサイトがオーステナイトへの変態を終了する温度。
Ms: 温度降下の過程でオーステナイトがマルテンサイトに転化し始める温度。
Mf:温度降下の過程でオーステナイトがマルテンサイトに転化し終わる温度。
ニチノールの相変態には熱ヒステリシスがあるため、AsとMfは等しくなく、同じ理由でAfとMsも等しくありません。

ニチノールには、形状記憶効果(SME)と超弾性(SE)という2つの特性があります。

shape memory alloy wire

1.形状記憶
形状記憶は、ある形状の母相がAf温度以上からMf温度以下に冷却され、完全にマルテンサイトを形成し、Mf温度以下でマルテンサイトを変形させることで起こります。Af温度以下に加熱されると、逆相変態により、材料は自動的に母相の形状に戻る。実際、形状記憶効果はニチノールの熱誘起相転移プロセスです。ある温度でニチノールが変形し、その温度が「転移温度」よりも高くなると、変形していない元の形状に戻る能力を指す。

2.超弾性
いわゆる超弾性とは、外力の影響下で試料が弾性限界ひずみをはるかに超えるひずみを生じ、除荷時にひずみが自動的に復元する現象を指す。母相では、外部応力の影響により、ひずみがマルテンサイト相転移を引き起こし、合金は通常の材料とは異なる機械的挙動を示す。その弾性限界は通常の材料よりもはるかに大きい。そして、もはやフックの法則には従わない。形状記憶効果と比較して、超弾性は熱を伴わない。

Категории
Об авторе

Chin Trento

イリノイ大学で応用化学の学士号を取得。彼の学歴は、多くのトピックにアプローチするための幅広い基盤となっている。スタンフォード・アドバンスト・マテリアルズ(SAM)で4年以上にわたり先端材料の執筆に携わる。彼がこれらの記事を書く主な目的は、読者に無料で、しかも質の高いリソースを提供することである。誤字、脱字、見解の相違など、読者からのフィードバックを歓迎する。

Оценки
{{viewsNumber}} Подумал о "{{blogTitle}}"
{{item.created_at}}

{{item.content}}

blog.levelAReply (Cancle reply)

Ваш адрес электронной почты не будет опубликован. Обязательные поля отмечены*

Комментарий*
Имя *
Электронная почта *
{{item.children[0].created_at}}

{{item.children[0].content}}

{{item.created_at}}

{{item.content}}

blog.MoreReplies

ОСТАВИТЬ ОТВЕТ

Ваш адрес электронной почты не будет опубликован. Обязательные поля отмечены*

Комментарий*
Имя *
Электронная почта *
Категории

ПОДПИСАТЬСЯ НА НАШУ РАССЫЛКУ

* Ваше имя
* Ваш e-mail
Успех! Теперь вы подписаны
Вы успешно подписались! Проверьте свой почтовый ящик, чтобы в ближайшее время получать отличные письма от этого отправителя.

Похожие новости и статьи

Подробнее >>
マグネシウム合金現代工学のための軽量化ソリューション

この記事では、マグネシウム合金について詳しく見ていきます。金属としてのマグネシウムの基本的な特性について説明する。現代工学で使用される様々なシリーズを取り上げ、自動車、航空宇宙、エレクトロニクス、スポーツ機器での用途を強調している。

УЗНАТЬ БОЛЬШЕ >
ラボグロウン・ダイヤモンドの産業利用:ジュエリーを超えて

ラボグロウン・ダイヤモンドが、装飾品以外の産業でどのように役立っているかをご覧ください。ダイヤモンドは、機械装置、電子機器の熱管理、光学システム、半導体装置などに耐久性、精度、効率をもたらします。

УЗНАТЬ БОЛЬШЕ >
リチウム吸着プロトタイプの開発にTiO₂粉末を応用する方法

チタン化合物粉末、特にLi₂TiO₃とH₂TiO₃は、将来のリチウム吸着技術への扉を開いている。化学的安定性、選択性、安定した構造により、リチウムの持続可能な回収と精製に大きな可能性を持つ材料となっている。

УЗНАТЬ БОЛЬШЕ >
Оставьте сообщение
Оставьте сообщение
* Ваше имя:
* Ваш e-mail:
* Название продукта:
* Ваш телефон:
* Комментарии: