製品
  • 製品
  • カテゴリー
  • ブログ
  • ポッドキャスト
  • 応用
  • ドキュメント
|
SDS
見積もり
/ {{languageFlag}}
言語を選択
Stanford Advanced Materials {{item.label}}
Stanford Advanced Materials
/ {{languageFlag}}
言語を選択
Stanford Advanced Materials {{item.label}}

W-Cu複合材料の主な用途

タングステン(W)は良好な電子放出機能を有するため、タングステン合金や W-Cu複合材料などの複合材料のクラスは、放電加工、電気機関車のガイドブロック、超高電圧スイッチ、電力業界の溶接に広く使用されている良好な電極材料です。

W-Cu複合材料の主な用途

例えば、タングステン-レニウム合金は、多くの場面で温度熱電対として白金に代わって使用されており、高性能タングステン-レニウムワイヤはまた、何千もの家庭に発売されるディスプレイ管の電子材料として使用されています。さらに、クロムや バナジウムなどの材料は、電子顕微鏡やコーティングガラスにも広く使われている。

今回は、W-Cu複合材料の主な用途を詳しく見てみよう。

タングステンは硬度が高く、全金属の中で最も融点が高く、(Cu)は電気伝導性、熱伝導性に優れ、W-Cu複合材料は電気伝導性、熱伝導性に優れ、熱膨張率が低く、耐アーク腐食性が高いため、電気接点、放電加工、抵抗溶接、プラズマ電極材料として古くから広く使用されている。マイクロエレクトロニクス情報技術の発展に伴い、W-Cu複合材料は大規模集積回路や高出力マイクロ波デバイスに広く使用されている。

  1. 電気接点に使用されるW-Cu複合材料

Wの融点(3390~3430℃)はCuの沸点(2350~2600℃)よりもはるかに高いため、タングステン-銅のCuは、電気接点として使用されたときに高温アークの作用下で「汗」の熱放散を通じて冷却し、タングステン骨格の完全性を維持することができ、したがって、電気接点の良好な破壊機能を確保する。

W-Cu複合材料は、アーク腐食、溶融溶接、耐電圧に対する優れた耐性を有し、真空スイッチ機器やSF6を消弧媒体として使用する新型高電圧機器などの高電圧およびUHV開閉接点としての使用に特に適しています。

  1. 電子パッケージおよびヒートシンク用W-Cuコンポジット

ICチップ技術の急速な発展に伴い、IC包装材料に対する要求はますます厳しくなっています。電子包装材料は、170~190W/(m・K)までの熱伝導率(TC)と低く特別に設定された熱膨張係数(CTE)を持つという要求に加えて、加工や成形が容易で低コストである必要があります。W-Cu複合材料は、熱物理パラメータの調整が容易であり、マイクロエレクトロニクスデバイスへの適用範囲が大幅に向上する。そのため、ハイパワーデバイスにおける優れたヒートシンク材料として評価されている。

適切な熱膨張係数は、マイクロエレクトロニクスデバイスのシリコンチップ、ガリウム砒素、セラミック材料などの半導体材料とうまくマッチングさせることができ、熱応力による熱疲労損傷を避けることができる。その上、W-Cu複合材料は最終サイズに形成することもでき、デバイスを小型化することができる。

  1. 電極加工用W-Cu複合材料

様々な高度電気加工技術の開発も、高耐熱性、高導電性、高熱伝導性、耐アークアブレーション性を持つW-Cu複合材料の重要な応用分野となっている。

CuおよびCu合金は、長い放電加工の間、加工電極として広く使用されている。CuやCu合金は安価で使いやすいが、電極材料の消費量が多すぎ、CuやCu合金の電極は放電加工による侵食に強くないため、加工精度が悪い。そのため、多くの場面での特殊加工のニーズに応えることができない。

まとめ

W-Cu複合材の主な用途について、より理解を深めていただければ幸いです。W-Cu複合材料についてさらに詳しく知りたい方は、スタンフォード・アドバンスト・マテリアルズ (SAM)を訪問することをお勧めする。

スタンフォード・アドバンスト・マテリアルズ(SAM)は、世界的なタングステン製品のサプライヤーであり、W-Cuの製造・販売において20年以上の経験を有し、顧客の研究開発および生産ニーズに応える高品質のW-Cuを提供しています。そのため、SAMはお客様のお気に入りのW-Cuサプライヤーおよびビジネスパートナーになると確信しております。

著者について

Chin Trento

イリノイ大学で応用化学の学士号を取得。彼の学歴は、多くのトピックにアプローチするための幅広い基盤となっている。スタンフォード・アドバンスト・マテリアルズ(SAM)で4年以上にわたり先端材料の執筆に携わる。彼がこれらの記事を書く主な目的は、読者に無料で、しかも質の高いリソースを提供することである。誤字、脱字、見解の相違など、読者からのフィードバックを歓迎する。

格付け
{{viewsNumber}} について考えてみた "{{blogTitle}}"
{{item.created_at}}

{{item.content}}

blog.levelAReply (Cancle reply)

メールアドレスは公開されません。は必須項目です。*

ご要望
名称 *
電子メール *
{{item.children[0].created_at}}

{{item.children[0].content}}

{{item.created_at}}

{{item.content}}

blog.MoreReplies

返信を残す

メールアドレスは公開されません。は必須項目です。*

ご要望
名称 *
電子メール *

ニュースレターを購読する

* お名前
* Eメール
成功 登録が完了しました
登録が完了しました!この送信者からの素晴らしいメールを受信するために、すぐに受信箱をチェックしてください。

関連ニュース&記事

もっと見る >>
プラズマ切断について知っておくべきこと

プラズマ切断は何十年も前から行われており、今でも導電性材料を切断する最も効率的な方法のひとつである。機械工場や加工工場で働いたことがある人なら、あるいはガレージで金属をいじったことがある人なら、プラズマ切断に出くわしたことがあるだろう。信頼性が高く、速く、驚くほど正確に金属を切断できる方法だ。ここでは、プラズマ切断とは何か、どのように機能するのか、他の切断方法と比較してどのような位置づけにあるのかについて説明します。

詳細はこちら >
溶接におけるニオブ添加の効果

ニオブ合金とステンレス鋼の溶接技 術は大きく進歩している。ステンレス鋼へのニオブの添加は、耐食性の 向上、結晶粒組織の微細化、靭性の向上によ り、溶接性能を著しく向上させる。

詳細はこちら >
医療用途におけるタンタル、ニオブ、白金/Irキャピラリーチューブの比較分析

タンタル(Ta)、ニオブ(Nb)、白金イリジウム(Pt/Ir)合金製のキャピラリ・チューブは、様々な医療機器、特にインターベンショナル・カーディオロジー、神経外科、埋め込み型電子機器において極めて重要な部品である。これらの金属は、その機械的特性だけでなく、生体適合性、放射線透過性、人体内での長期安定性からも選択される。この記事では、これら3つの材料の物理的および化学的特性について説明し、特定の医療用途への適合性を検討し、これらのチューブが臨床現場でどのように使用されているかを示す実例を紹介する。

詳細はこちら >
メッセージを残す
メッセージを残す
* お名前:
* Eメール:
* 商品名:
* 電話番号:
* ご要望: