{{flagHref}}
Продукция
  • Продукция
  • Категории
  • Блог
  • Подкаст
  • Приложение
  • Документ
|
/ {{languageFlag}}
Выберите язык
Stanford Advanced Materials {{item.label}}
Stanford Advanced Materials
Выберите язык
Stanford Advanced Materials {{item.label}}

歯科用ジルコニア構造体

はじめに

ジルコニア構造は、歯科修復における耐久性と精度を提供し、現代歯科医療に革命をもたらした。この記事では、CAD-CAM技術を使用してジルコニア構造を作製する複雑さを掘り下げ、この革新的なアプローチの方法、利点、および課題を探ります。

zirconia dental implants

ジルコニア製作におけるCAD-CAM技術

コンピュータ支援設計およびコンピュータ支援製造(CAD-CAM)技術を利用することで、ジルコニア構造は比類のない精度で製作されます。このプロセスでは主に2つの方法が採用され、それぞれに独自の考慮事項があります。

完全焼結ブロックからのフライス加工:

  • 長所完全に焼結したジルコニア・ブロックから直接ミリングすることにより、構造の収縮をなくし、追加調整なしで最終的な形態を得ることができる。
  • 短所:研削工具の過度の摩耗や加工中の欠陥の混入により、機械的信頼性が損なわれる可能性がある。

予備焼結ブロックからのフライス加工:

  • 長所:予備焼結ブロックは、設計段階での構造収縮の調整が可能で、最終焼結後の正確な適合を保証する。
  • 短所:収縮の補正に伴う複雑さは、綿密な計画を必要とする。

CAD-CAMプロセスの概要

CAD-CAMプロセスは、3つの重要なステップで展開されます:

  1. デジタルデータの取得:デジタルデータの取得:正確なデジタルデータの取得は、正確な設計と製作のための基礎となります。
  2. コンピューター処理と設計:高度なコンピューター・アルゴリズムが取得したデータを処理し、ジルコニア構造の綿密な設計を促進します。
  3. 製作:設計された構造は、フライス加工や機械加工によって実現され、オーダーメイドのジルコニア修復物が完成します。

zirconia full

審美的考察と進歩

従来、ジルコニアはくすんだ白色であったため、その不透明性により基礎構造を明らかにすることが困難でした。最新の歯科用ジルコニア・システムは、構造的な着色を組み込んで審美性を高めることにより、この問題に対処しています。解剖学的形状のモノリシック・ジルコニア・レストレーションは、大規模な歯科技工作業の必要性を最小限に抑えます。

課題と今後の研究

進歩にもかかわらず、課題も残っている。イットリア安定化正方晶系ジルコニア多結晶体(Y-TZP)は、湿潤環境における安定性の問題に直面しており、結晶学的変態による潜在的な強度低下や、パラファンクショナルな癖による周期的疲労が懸念されている。現在進行中の研究では、歯科用ジルコニアに対する低温劣化(LTD)の影響を理解することに重点を置いている。

ベニアリング技術

ジルコニア・インフラストラクチャーのポーセレンベニアリングは、解剖学的輪郭と審美的魅力を達成する上で極めて重要な役割を果たします。2つの著名なベニアリング法が採用されています:

伝統的なレイヤリング技法:

  • 従来のレイヤリング技法: 緻密なレイヤリング技法で、段階的にポーセレンを積み重ね、望ましい審美性を実現します。

ホットプレス法:

  • 熱と圧力を加えてジルコニアとベニアをシームレスに接着させる最新のテクニック。

結論

CAD-CAM技術を駆使したジルコニア構造は、現代歯科医療における精度の最高峰です。課題はありますが、現在進行中の研究と革新的なベニア技術は、ジルコニアが耐久性があり、審美的に美しい歯科修復を実現する礎石であり続けることを保証します。スタンフォード・アドバンスト・マテリアルズでは、歯科材料と技術の進化に貢献するため、最先端の方法論を取り入れています。

Об авторе

Chin Trento

イリノイ大学で応用化学の学士号を取得。彼の学歴は、多くのトピックにアプローチするための幅広い基盤となっている。スタンフォード・アドバンスト・マテリアルズ(SAM)で4年以上にわたり先端材料の執筆に携わる。彼がこれらの記事を書く主な目的は、読者に無料で、しかも質の高いリソースを提供することである。誤字、脱字、見解の相違など、読者からのフィードバックを歓迎する。

Оценки
{{viewsNumber}} Подумал о "{{blogTitle}}"
{{item.created_at}}

{{item.content}}

blog.levelAReply (Cancle reply)

Ваш адрес электронной почты не будет опубликован. Обязательные поля отмечены*

Комментарий*
Имя *
Электронная почта *
{{item.children[0].created_at}}

{{item.children[0].content}}

{{item.created_at}}

{{item.content}}

blog.MoreReplies

ОСТАВИТЬ ОТВЕТ

Ваш адрес электронной почты не будет опубликован. Обязательные поля отмечены*

Комментарий*
Имя *
Электронная почта *

ПОДПИСАТЬСЯ НА НАШУ РАССЫЛКУ

* Ваше имя
* Ваш e-mail
Успех! Теперь вы подписаны
Вы успешно подписались! Проверьте свой почтовый ящик, чтобы в ближайшее время получать отличные письма от этого отправителя.

Похожие новости и статьи

Подробнее >>
マグネシウム合金現代工学のための軽量化ソリューション

この記事では、マグネシウム合金について詳しく見ていきます。金属としてのマグネシウムの基本的な特性について説明する。現代工学で使用される様々なシリーズを取り上げ、自動車、航空宇宙、エレクトロニクス、スポーツ機器での用途を強調している。

УЗНАТЬ БОЛЬШЕ >
ラボグロウン・ダイヤモンドの産業利用:ジュエリーを超えて

ラボグロウン・ダイヤモンドが、装飾品以外の産業でどのように役立っているかをご覧ください。ダイヤモンドは、機械装置、電子機器の熱管理、光学システム、半導体装置などに耐久性、精度、効率をもたらします。

УЗНАТЬ БОЛЬШЕ >
リチウム吸着プロトタイプの開発にTiO₂粉末を応用する方法

チタン化合物粉末、特にLi₂TiO₃とH₂TiO₃は、将来のリチウム吸着技術への扉を開いている。化学的安定性、選択性、安定した構造により、リチウムの持続可能な回収と精製に大きな可能性を持つ材料となっている。

УЗНАТЬ БОЛЬШЕ >
Оставьте сообщение
Оставьте сообщение
* Ваше имя:
* Ваш e-mail:
* Название продукта:
* Ваш телефон:
* Комментарии: